CBSE Sample Paper Maths Set - A Answer

 Class 8

 Class 8}

1. $1 / 2$.
2. three angles.
3. 8 cm .
4. 9 .
5. 3609
6. Rs. 4500.
7. 8.
1. length, breadth and height.

Section - B

9.

Let the lengthof each edge of the cube be 'a'
Then its volume $=(a)^{3} \mathrm{~cm}^{3}$
$a^{3}=343, \quad \therefore a=7 \mathrm{~cm}$.
Total surface area of the cube $=6 \mathrm{a}^{2} \mathrm{sq}$. units
$=(6 \times 7 \times 7) \mathrm{cm}^{2}=294 \mathrm{~cm}^{2}$
\therefore Total sufrace area of cube $=294 \mathrm{~cm}^{2}$

Volume of a cuboid is $1 \times b \times h \quad$ Or,
$=8 \times 3 \times 5 \mathrm{~cm}^{3}$
$=120 \mathrm{~cm}^{3}$
Volume of cuboid $=120 \mathrm{~cm}^{3}$

chasesuess	

10. Since opposite sides of a parallelogram are equal, so in the parallelogram PQRS, $P Q=R S=4 \mathrm{~cm}$ and $Q R=S P=4 \mathrm{~cm}$
Since all sides of a parallelogram are equal, therefore, it is a rhombus.
11. Total outcomes of the event is 8 .
(i) Probability of getting a green sector $=4 / 8=1 / 2$
(ii) Probability of not getting a green sector, i.e. probability of getting a red (R) sector = $4 / 8=1 / 2$
12. (i) Front view/Side View
(ii) Top view
(iii) Side view/Front View
13. Suppose the provision last for x days when the number of student in 120 .

Number of students	100	120
Days	15	x

$$
\begin{aligned}
& 100 \times 15=120 \times x \\
& x=\frac{100 \times 15}{120}=12 \frac{1}{2} \text { days }
\end{aligned}
$$

$121 / 2$ days.

14. Sum of the digits of the number $51 x 3$ is $5+1+x+3=9+x$ is a multiple of 9 .
$\therefore x=0$ or 9
$9+0=9$, a multiple of 9 and
$9+9=18$, a multiple of 9 .

Section - C

15.

x	0	1	2	3	4	5
$y=3 x$	0	3	6	9	12	15

chasesuess	CBSEGuess.com

When $x=4, y=12$
When $x=5, y=15$
16.

Volume of one box $=0.8 \mathrm{~m}^{3}$
Volume of godown $=60 \times 40 \times 20 \mathrm{~m}^{3}$
Number of boxes in store $=\frac{60 \times 40 \times 20}{0.8}$

$$
=60,000 .
$$

Thus, the number of boxes in store is 60,000 .
Or,
In rhombus diagnols bisect each other at right angles.
$\therefore O B^{2}=A B^{2}-O A^{2}$
$=25-16$
$=9$
$\therefore \mathrm{OB}=3 \mathrm{~cm}$
Hence, the length of the other diagonal is $\mathrm{BD}=\mathrm{OB}+\mathrm{OD}=6 \mathrm{~cm}$.
Area of rhombus $=\frac{1}{2} \times$ product of its diagnals

$$
\begin{aligned}
& =\frac{1}{2} \times 8 \times 6 \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

17. Total cards in a pack are 52.

Number of black kings is 2.
\therefore Probability of getting a black king $=2 / 52=1 / 26$
18.
\therefore (i) $2,3,5$
\therefore (ii) 6
\therefore (iii) 4,6

chasesuess	CBSEGuess.com

19.

Rate of discount $=10 \%$
Selling price $=$ Marked price $\times\left(\frac{100-\text { discount } \%}{100}\right)$

$$
\begin{aligned}
& =280 \times\left(\frac{100-10}{100}\right) \\
& =280 \times \frac{90}{100} \\
& =\text { Rs. } 252 .
\end{aligned}
$$

Rate of profit $=26 \%$
C.P. $=\frac{100}{100+\text { gain } \%} \times$ S.P.
C.P. $=\frac{100}{100+26} \times 252$
$=$ Rs. 200 .
\therefore Actual cost price of article is Rs. 200.

Or,

Let the cost of the article be x , then
Gain $=\frac{1}{10}$ of x
$=\frac{\mathrm{x}}{10}$
Rate of Gain $=\frac{\text { Gain }}{\text { C.P. }} \times 100$

$$
\begin{aligned}
& =\frac{\frac{x}{10}}{x} \times 100 \\
& =10 \% .
\end{aligned}
$$

20. The price of the air conditioner = Rs 22000 including VAT.

If the price without VAT is Rs 100, then with VAT it is of Rs 110

cbse Fguess	CBSEGuess.com

Price of air conditioner including VAT is Rs 22000.

\therefore Air conditioner price before VAT is

$=\frac{22000 \times 100}{110}=$ Rs. 20,000
21. The given quadrilateral can be drawn as follows:

Step 1: Construct $\triangle A B C$ with $B C=5.5 \mathrm{~cm}, A B=4.5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.
Step 2: Vertex D is 6 cm away from vertex A. Therefore, while taking A as centre, draw an arc of radius 6 cm .

Step 3: Taking C as centre, draw an arc of radius 4 cm , cutting the previous arc at point D. Join D to A and C.
$A B C D$ is the required quadrilateral.
4.5

22.

cbse	
gruess	CBSEGuess.com

23.

Let the map distance be $x \mathrm{~cm}$ and the actual distance be ycm . Then,
$1: 40000000=x: y$

$$
\begin{aligned}
& \frac{1}{4 \times 10^{7}}=\frac{x}{y} \\
& \Rightarrow \frac{1}{4 \times 10^{7}}=\frac{4}{y} \\
& y=16 \times 10^{7} \mathrm{~cm} \\
& \text { or } y=1600 \mathrm{~km} .
\end{aligned}
$$

Two cities which are 4 cm apart on the map are actually 1600 km away from each other.
24. Let the original number be $10 a+b$.

Sum of the digits $a+b$
$a+b+18=10 a+b$
$\therefore 9 a=18$ or

$$
\mathrm{a}=2
$$

Also, the digit at the unit's place is double the digits in the ten's place, i.e. $b=2 a$ $\therefore b=4$

So, the two digit number is 24 .
Or,

Let the original number be $10 \mathrm{a}+\mathrm{b}$.
It is given that $b=3 a$
Also, $a+b=12$
$\Rightarrow a+3 a=12$
$\Rightarrow 4 a=12$
$\Rightarrow a=3, b=3 a=3 \times 3=9$
$\therefore a=3, b=9$
Hence the number is 39 .

cbse	
gruess	CBSEGuess.com

Section - C

25. Reena deposited money in bank = Rs. 12000

$$
\text { Rate of intrest = } 10 \%
$$

$$
\text { Interest after one year }=(12000 \times 10 \times 1) / 100
$$

$$
=1200 .
$$

Time	1	2	3	4
Simple Interest	1200	2400	3600	4800

Graph between time and Simple interest is given below:

From graph we see that simple interest after 4 years is
Rs. 4800.

Or,

Speed of train $=75 \mathrm{~km} / \mathrm{hr}$
Table for distance - time graph is given below:

Time (in hours)	1	2	3	4
Distance travelled(in Km)	75	150	225	300

The distance - time graph is given below:

(i) From graph,

Train will travel in 2 hours and 30 minutes $=187.5 \mathrm{~km}$
(ii) Time required to cover a distance of $300 \mathrm{~km}=4 \mathrm{hrs}$.
26. Number of arrived soldiers in camp $=400$

Total number of soldiers in camp $=800+400$
=1200

800 soldiers finished food in days $=60$ days
Let 1200 soldiers will finish food in days $=x$ days
Then, $800 \times 60=1200 \times x$
$x=(48000) /(1200)=40$ days

Thus, the food will last for 40 days for 1200 soldiers.

chase	
gruess	CBSEGuess.com

27.

Let the needed people to finish the work be x.

No. of People	Hours	Days
40		
$x \downarrow$	$8 \uparrow$	$21 \uparrow$
10	14	

So,
$\frac{\mathrm{x}}{40}=\frac{8}{10} \times \frac{21}{14}$
$\mathrm{x}=\frac{8}{10} \times \frac{21}{14} \times 40$
$=48$
Thus, required people for work $=48-40$

$$
\text { = } 8
$$

28.

Area of floor $=\frac{\text { Total cost of matting }}{\text { Rate of matting }}$
Area of floor $=\frac{91.80}{0.85}$
length \times breadth $=108 \mathrm{~m}^{2}$
$12 \times$ breadth $=108 \mathrm{~m}^{2}$
breadth $=\frac{108 \mathrm{~m}^{2}}{12 \mathrm{~m}}$
$=9 \mathrm{~m}$
Area of walls $=\frac{\text { Total cost of papering }}{\text { Rate of papering }}$

$$
\begin{aligned}
2(l+b) \mathrm{h} & =\frac{340.20}{1.35} \\
2(12+9) \mathrm{h} & =252 \mathrm{~m}^{2} \\
\text { height } & =\frac{252 \mathrm{~m}^{2}}{42 \mathrm{~m}} \\
& =6 \mathrm{~m}
\end{aligned}
$$

Thus, height of room is 6 m .

Or,

chasesuess	

Let height of water in cylinderical container be xcm .
Radius of cylinderical container $=28 \mathrm{~cm}$
Volume of water in cylinderical container $\left(V_{1}\right)=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times(28)^{2} \times x \\
\text { Volume of rectangular solid } & =32 \times 22 \times 14
\end{aligned}
$$

Let rise in water level on submerging solid $=\mathrm{h} \mathrm{cm}$
So,
Volume of water with solid $\left(\mathrm{V}_{2}\right)=\pi(28)^{2}(\mathrm{x}+\mathrm{h})$
Then,

$$
V_{2}-V_{1}=32 \times 22 \times 14
$$

$$
\pi(28)^{2}(x+h)-\pi \times(28)^{2} \times x=32 \times 22 \times 14
$$

$$
\begin{aligned}
\frac{22}{7}(28)^{2}\{x+h-x\} & =32 \times 22 \times 14 \\
h & =\frac{32 \times 22 \times 14 \times 7}{22 \times 28 \times 28} \\
& =\frac{32}{8} \\
& =4 \mathrm{~cm}
\end{aligned}
$$

29.

Given: ABCD is a trapezium in which $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{C}=50^{\circ}$ and

To Prove: (i) $\mathrm{BC}=\mathrm{DA}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$ and find the measurement of $\angle \mathrm{C}$.

Construction: Draw DE and CF perpendicular on $A B$.

(i) In $\triangle A E D$ and $\triangle B F C$
$\angle \mathrm{A}=\angle \mathrm{B} \quad\left[\right.$ each $\left.50^{\circ}\right]$
$\angle \mathrm{E}=\angle \mathrm{F} \quad\left[\right.$ each $\left.90^{\circ}\right]$
$D E=C F \quad\left[\begin{array}{l}\text { perpendiculars between parallel lines } \\ \text { are equal }\end{array}\right]$
$\therefore \triangle \mathrm{AED} \cong \triangle \mathrm{BFC}$ (By AAS)
So, $D A=B C \quad$ (By CPCT)
(ii) $\angle \mathrm{ADE}=\angle \mathrm{CFB}$ (By CPCT)

Adding 90° both sides, we get

$$
\angle \mathrm{ADE}+90^{\circ}=\angle \mathrm{BCF}+90^{\circ}
$$

$$
\angle D=\angle C
$$

Since $A B \| C D$,
So, $\angle B+\angle C=180^{\circ}$

$$
\begin{aligned}
50^{\circ}+\angle \mathrm{C} & =180^{\circ} \\
\angle \mathrm{C} & =180^{\circ}-50^{\circ} \\
& =130^{\circ}
\end{aligned}
$$

30.

(i) Sum of digits $=2+2+3+x+4$

$$
=11+x
$$

$(11+x)$ should be divisible by 3 .
This is possible if $11+x=3,6,9,12, \ldots$
Since x is a digit so,

$$
\begin{aligned}
11+x & =12 \\
x & =1
\end{aligned}
$$

(ii) Sum of digits $=4+5+4+3+x$

$$
=16+x
$$

($16+x$) should be divisible by 3 .
This is possible if $16+x=3,6,9,12,15,18 \ldots$
Since x is a digit so,

$$
\begin{gathered}
16+x=18 \\
x=2
\end{gathered}
$$

(iii) Sum of digits $=2+5+6+2+x+1$

$$
=16+x
$$

$(16+x)$ should be divisible by 3 .

chasesuess	CBSEGuess.com

This is possible if $11+x=3,6,9,12,15,18 \ldots$
But since x is a digit so,

$$
\begin{aligned}
16+x & =18 \\
x & =2
\end{aligned}
$$

(iv) Sum of digits $=3+4+9+5+x$

$$
=21+x
$$

$(21+x)$ should be divisible by 3 .
This is possible if $21+x=3,6,9,12, \ldots, 21,24, \ldots$
But since x is a digit so,

$$
\begin{aligned}
& 21+x=21 \\
& x=0
\end{aligned}
$$

31.

Class - Interval	Tally Marks	Frequency
5-25	Н曲	11
25-45	III	3
45-65	HHH H	10
65-85	ННШ	9
85-105	HIHI	6
105-125	U11	4
125-145	III	3
145-165	III	4

Histogram of following data is given below:

chase	
gruess	CBSEGuess.com

32.

Sum of digits $=7+2+1+6+3+4+5+8=36$
36 is divisible by 9 , so 72163458 is divisible by 9.
(ii) Sum of digits $=2+3+4+5+7+8+9+1=39$

39 is not divisible by 9 , so 23457891 is not divisible by 9 .
(iii) Sum of digits $=1+2+3+0+4+9+0+5=24$

24 is not divisible by 9 , so 12304905 is not divisible by 9 .
(iv) Sum of digits $=3+6+4+5+8+0+9+1=36$

36 is divisible by 9 , so 36458091 is divisible by 9 .
33.

Let C.P. of chair = Rs.x
Rate of loss = 15\%
So,
S.P. of chair $=x\left(\frac{100-15}{100}\right)$

$$
=x\left(\frac{85}{100}\right)
$$

$$
=\frac{17 x}{20}
$$

New S.P. of chair $=\frac{17 x}{20}+800$
Rate of profit $=5 \%$
So,
New S.P. of chair $=x\left(\frac{100+5}{100}\right)$

$$
\begin{aligned}
& =\frac{105}{100} x \\
& =\frac{21 x}{20}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\frac{17 x}{20}+800 & =\frac{21 x}{20} \\
800 & =\frac{21 x}{20}-\frac{17 x}{20} \\
800 & =\frac{4 x}{20} \\
800 \times \frac{20}{4} & =x \\
4000 & =x
\end{aligned}
$$

Thus, the cost price of chair is Rs. 4000.

chase	
gruess	CBSEGuess.com

34.

C.P. of watch for Rakesh $=$ Rs. 800
S.P. of watch for Rakesh $=$ Rs. 1000

Profit on watch to Rakesh $=1000-800$

$$
\text { = Rs. } 200
$$

Rate of Profit $=\frac{200}{1000} \times 100$
$=20 \%$
C.P. of car for Mukesh = Rs. 4,00,000
S.P. of car for Mukesh $=$ Rs. $4,20,000$

Profit on car for Mukesh $=$ Rs. $(4,20,000-4,00,000)$
Profit on car for Mukesh $=$ Rs.20,000

$$
\text { Rate of Profit }=\frac{20,000}{4,00,000} \times 100
$$

$$
=5 \%
$$

So, Rakesh made a better sale.

